# Model Evaluation for Product Performance

Evaluate your AI models to ensure they meet product quality and deliver tangible business value. Learn metrics, experimentation and analytics techniques to make data-driven decisions.



## **Evaluation Metrics**

Measure model performance using multiple dimensions.

| Metric    | What it measures                             |  |
|-----------|----------------------------------------------|--|
| Accuracy  | Overall proportion of correct predictions    |  |
| Precision | True positives among all predicted positives |  |
| Recall    | True positives among all actual positives    |  |
| F1 Score  | Harmonic mean of precision and recall        |  |



#### Accuracy

How many predictions were correct?



#### Precision

Focuses on relevance of positive predictions.



#### Recall

Focuses on completeness of positive predictions.



#### F1 Score

Balances precision and recall.

# A/B Testing

Compare multiple variations to learn what drives engagement.



- Split real users into random groups each sees a different variant.
- Variants differ in one design element (e.g., button text).
- Collect metrics like conversion or click-through rate to determine winners.
- Choose the winning design only if results are statistically significant.

## **Cross-Validation**

Robustly estimate model performance and avoid overfitting.



- Split data into k equal folds; iteratively train on k-1 folds and validate on the remaining fold.
- Average results across folds for a more accurate performance estimate.
- Use scikit-learn's cross\_val\_score or cross\_validate to automate evaluation with multiple metrics.

## **Confusion Matrices**

Visualise errors to fine-tune your classifier.

|                    | l Positive Predict | ed Negative |  |
|--------------------|--------------------|-------------|--|
| Actual<br>Positive | TP                 | FP          |  |
| Actual<br>Negative | FN                 | TN          |  |

- TP: model correctly predicted a positive case.
- FP: model predicted positive but it was actually negative.
- FN: model predicted negative but it was actually positive.
- TN: model correctly predicted a negative case.

# Product Analytics & Tools

Track real user behaviour and measure feature impact.



## Scikit-learn

Open-source library built on NumPy and SciPy. Provides cross\_val\_score, cross\_validate and a suite of metrics (accuracy, precision, recall, F1).



## **Mixpanel**

Product analytics platform for tracking in-app behaviour. Event tracking, segmentation, funnels and retention analysis help you connect user actions to model impact.

# **Defining Success Metrics**

Align model performance with business goals.

## Why it matters

Success metrics quantify how well a product meets its goals and user needs. Monitoring metrics drives data-driven decisions, optimises user experience and ensures ROI aligns with product goals.

## How to define

- Identify business goals using frameworks like OKR or SMART.
- Select North Star, HEART or AAARRR metrics to track across the user journey.
- Leverage no-code analytics tools and custom dashboards for visualisation.
- Use acquisition, activation, adoption, retention, referral and revenue metrics to evaluate business impact.

## Let's Build!

Apply evaluation techniques to a recommender system.



We'll implement and evaluate a recommendation model using scikit-learn and analyse its effect on product engagement with Mixpanel.

Collect data → Train model → Evaluate metrics → Analyse business impact.